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Supplementary Note 1. Limitations of current computational methods for microbial community profiling. 

Current bioinformatic methods for metagenomic community profiling are limited by three main factors including 
computational expense, untenable accuracy for short (<400nt) reads, and difficulties in normalizing read-level relative 
abundances into per-organism relative abundances. Computationally, millions or billions of metagenomic reads 
classified by mapping must typically be compared to thousands of microbial reference genomes, making the 
performance of the algorithms employed for this alignment a bottleneck. In contrast, methods considering only 
sequence composition typically encounter neither of these efficiency issues, but frequently entail reduced accuracy and 
a loss of species-level resolution. Short read lengths, as obtained by Illumina sequencing, thus present particular 
difficulties for compositional methods, as precise and robust features become challenging to establish. Finally, all 
current methods provide clade assignments on a per-read basis, but they fail to normalize these assignments based on 
differences in organisms' genome sizes, gene copy number variations, and mapping confidence scores. Raw read-to-
clade mappings are thus not a direct proxy for the cellular composition of a microbial community, regardless of the 
efficiency or accuracy of the computational method by which they are derived. 

Supplementary Note 2. Enterotypes and species-level abundance patterns in the healthy gut microbiome. 

MetaPhlAn's estimates of species-level abundance allowed us to refine the investigation of genus-level gut microbiome 
clusters, referred to as enterotypes1 (Figure 3C). Enterotype 2 (Prevotella-dominant) remained clearly identifiable, but 
the Bacteroides of Enterotype 1 were instead diversified in a manner quite similar to lactobacilli in the vaginal 
microbiota, although with more species and less exclusive dominance. In particular, B. ovatus, B. vulgatus, and B. 
stercoris characterized three distinct sets of samples and, interestingly, B. eggerthii and a yet-to-be-sequenced 
Bacteroides species demonstrated discrete abundance patterns alternating dominance with near-complete absence. 
Other species achieving dominance in multiple samples included Alistipes putredinis, Dialister invisus, Eubacterium 
siraeum, Eubacterium rectale, and Butyrivibrio crossotus.  

This species-level analysis together with the genus-level patterns observed in Fig. 3B and detailed in the main text, 
yielded a unique view of the presence of well-defined microbial community compositions or enterotypes. When 
investigating enterotypes, these data provide no clear support for a Bacteroides genus enterotype, as the abundance of 
the clade forms a continuous gradient throughout the samples without evidence of a discrete community type. Critically, 
however, at the species level, several small well-defined clusters were detected, suggesting a more tractably discrete 
organization of diversity below the genus level. This would argue that the healthy gut might behave more similarly to the 
healthy vaginal microbiota, in that detectable discrete community states should be sought at the species or strain level. 
In fact, the only genus-level cluster confirmed in these data was the Prevotella enterotype, which proved to consist of 
only one species (P. copri). Even at the species level, all of these data remain cross-sectional and not longitudinal; further 
investigations of the stability and reproducibility of microbiota types and their correlation with environmental factors 
will certainly be needed, and should be performed in terms of OTUs, species, or strains. 

Supplementary Note 3. Combined analysis of microbiomes in distinct healthy populations. 

The clades most different between the HMP and MetaHIT samples were Bacteroides ovatus (5.8%±10.1% in HMP, 
0.5%±0.9% in MetaHIT) and Phascolarctobacterium (0.13%±0.59% in HMP, 1.13±2.18 in MetaHIT). At higher taxonomic 
levels, samples from MetaHIT were on average enriched for Clostridia and Bifidobacteriales. Intriguingly, these 
differences were not best explained by shifts across all members of the two cohorts. Instead, they corresponded to 
differential representation of subjects with individually high or low populations of these bacterial species. Many HMP 
samples were dominated by specific Bacteroides species, for example, especially B. ovatus and B. vulgatus, whereas 
comparable numbers of samples dominated by Prevotella appeared in both cohorts. Other evenly represented clusters 
included those dominated by Butyrivibrio crossotus and by Eubacterium rectale. The fact that samples with highest 
proportions of all Bacteroides species were found in the American cohort is particularly interestingly, because this 
phenomenon has been recently associated with long-term diets rich in protein and animal fat2. In addition, MetaPhlAn 
highlighted the contribution of several different species to the overall abundance of Bacteroides, and likewise of a 
variety of species-level clades to the Firmicutes. This suggests that the correlation between microbiota and factors like 
diet or disease is driven by characteristics of the dominating species - or even strains - and not by the total impact of 
whole phylum or genus in the community composition. 
 



 
Supplementary Fig. 1: The MetaPhlAn marker database covers all functional modules with fractions comparable to the total 
background distribution computed using all available genomes. Yellow bars represent the fraction of MetaPhlAn marker genes in 
each high-level functional category in the COG database. The overall functional distribution of all the genes in IMG JGI is also 
reported as a reference background distribution. 

 
 
 



 
Supplementary Fig. 2. Accuracy comparison for MetaPhlAn, PhymmBL, BLAST, RITA, and NBC on the evenly distributed HC1 
synthetic metagenome. The comparison detailed in Figure 1 A-B for species and classes is extended here to genera, families, orders 
and phyla. The HC1 metagenome is composed by 1,000,000 reads from 100 different organisms with identical relative abundances 
of genome copy numbers (1%). 



 
Supplementary Fig. 3. Accuracy comparison of several methods on the evenly distributed HC2 synthetic metagenome. MetaPhlAn, 
PhymmBL, BLAST, RITA, and NBC are compared on a second high-complexity metagenome (HC2) with evenly distributed abundances 
build using 100 organisms not considered in HC1. All taxonomic levels are reported here with the rooted mean squared errors of all 
the tested methods. 



 
Supplementary Fig. 4. Comparison of MetaPhlAn with other computational methods in predicting the taxonomic composition of 8 
synthetic metagenomes with staggered microbial abundances. We extend here the comparison described in Figure 1 C reporting 
the genus-, family-, order-, and phylum-level quantification of organismal abundance estimated from 8 low-complexity (25 
organisms each) synthetic communities with log-normally distributed abundances. 

 



 
Supplementary Fig. 5. Species-level hierarchical clustering for the HMP vaginal samples. The 51 posterior fornix samples from the 
HMP cohort were profiled by MetaPhlAn and the ten most abundant species hierarchically clustered (using Bray-Curtis similarity 
among samples and Pearson correlation among species). The five resulting clusters coincide with high abundances (above 50% 
percentage abundance) of four different Lactobacillus species and with their absence as reported previously on an independent 
dataset
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Supplementary Fig. 6. Community compositions on four marine metagenomes sampled at different depths in permanent marine 
oxygen minimum zones (data from Stewart et al.
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). A) MetaPhlAn's community composition inferences from the domain to class 

level highlight a substantial presence of archaeal organisms (notably underrepresented in the deepest sample) and 
Alphaproteobacteria as graphically represented using Krona
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. Decreased abundance of Archaea in the two deepest samples 

corresponds to an increase of Betaproteobacteria, Gammaproteobacteria, Bacteroidia, and Chlamydiae, and MetaPhlAn provided 
accurate assessments of certainty even for environments less well-covered by reference genomes. B) The five most abundant 
species according to a published blast-based approach
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 are compared to MetaPhlAn predictions. Both approaches consistently 

identified Nitrosopumilus maritimus, Pelagibacter ubique, and an as-yet-unsequenced clade in the Pelagibacter genus as the three 
most represented species in the marine oxygen minimum zone ecosystem. 



 
Supplementary Fig. 7. Single-markers read counts for four representative species in the metagenomic stool samples from the 
Human Microbiome Project
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 show agreement among multiple within-species markers. For each of the four species, each box 

represents a sample (individual subject) and captures the distribution of read counts assigned to all single markers. These are 
normalized by the nucleotide length of the markers and ordered based on samples' median abundances for the species. Most 
samples show a tight distribution of each species' markers around a consensus relative abundance. Interestingly, nearly all outliers 
appear below the boxplots and represent underestimated marker abundances (i.e. partial false negatives). Cases where these cause 
extended interquartile ranges (e.g. Prevotella copri and Ruminococcus bromii) are consistently due to sample-specific strain 
variability, most likely due to differences in gene composition between the reference genomes and the genome in a subject's 
community. For example, several subjects' P. copri strains appear to match the sequence reference strain, but other subjects' strains 
lack large contiguous regions, resulting in unusually low counts for some markers. MetaPhlAn's classification strategy is robust to 
this, and additional sequenced genomes in the same species will automatically decrease the impact of this phenomenon. Moreover, 
the analysis of the distribution of specific markers across multiple samples can be exploited to characterize microbiomes sub-types 
at the strain level.  



Supplementary Table 1: Genus level percentage precision for metagenomic reads (500,000 in total) sampled with an Illumina 
MAQ model (see methods) from 20 genomes belonging to species not included in the MetaPhlAn genomic repository. MetaPhlAn 
proved to outperform all alignment-free (PhyloPythiaS, Phymm), alignment-based (BlastN), and hybrid (PhymmBL) methods for 70% 
of newly classified microbes. Five of the six cases in which PhymmBL achieved better accuracies are due to MetaPhlAn's default 
BLASTN parameters, configured for "typical" microbes; increasing its sensitivity (word size 15, evalue 1e-15, reported as MetaPhlAn 
strict) allowed MetaPhlAN to outperform PhymmBL with only a slight computational overhead. For the remaining case 
(Gluconobacter europaeus NZ_CADR), MetaPhlAn detects a very low Gluconobacter abundance (<1%) but a high fraction (>90%) of 
an unclassified subclade in Acetobacteraceae, suggesting that this genome should be considered a genus distinct from 
Gluconobacter. 

New 
Genome 

New Species Target Family MetaPhlAn 
MetaPhlAn 

strict 
PhyloPythiaS Phymm BlastN PhymmBL 

NZ_BABW Acetobacter aceti Acetobacteraceae 100.00 86.76 0.00 1.35 2.41 2.75 

NZ_AFBG Acidovorax radicis Comamonadaceae 11.98 41.79 2.04 5.96 13.47 13.66 

NZ_CACP Aeromonas caviae Aeromonadaceae 93.24 83.25 3.98 19.60 81.02 81.26 

NZ_AFBB Dialister micraerophilus Veillonellaceae 99.75 99.86 0.00 0.00 0.00 0.00 

NZ_AEXB Enterobacter mori Enterobacteriaceae 49.36 84.07 0.06 10.35 76.22 76.70 

NZ_ADLY 
Enterococcus 

saccharolyticus 
Enterococcaceae 99.89 91.39 0.00 1.54 8.73 8.88 

NZ_CADR 
Gluconacetobacter 

europaeus 
Acetobacteraceae 0.83* 1.77* 0.00 16.86 67.10 70.92 

NZ_AFBC Haemophilus aegyptius Pasteurellaceae 99.94 97.71 5.15 61.17 99.44 99.34 

NZ_AFHS Kingella kingae Neisseriaceae 28.59 83.37 0.00 0.00 0.00 0.00 

NZ_AEIZ Leuconostoc fallax Leuconostocaceae 48.58 95.31 0.50 9.04 24.67 28.51 

NZ_AEOR Leuconostoc lactis Leuconostocaceae 58.50 68.50 0.72 9.31 38.81 40.83 

NZ_AGAY Neisseria shayeganii Neisseriaceae 11.26 27.39 2.97 10.98 16.99 19.96 

NZ_AFWQ Neisseria weaveri Neisseriaceae 82.49 73.89 7.23 24.09 26.68 35.63 

NZ_AFHW Paenibacillus elgii Paenibacillaceae 0.00 67.44 1.89 5.55 18.78 20.81 

NZ_AHBD 
Pseudomonas 

psychrotolerans 
Pseudomonadaceae 9.69 72.35 4.83 16.09 36.45 39.57 

NZ_AHBW 
Rhodococcus 
pyridinivorans 

Nocardiaceae 40.26 12.26 7.14 8.71 24.47 29.16 

NZ_AGIU 
Saccharomonospora 

azurea 
Pseudonocardiaceae 79.13 83.90 0.00 1.78 26.49 26.19 

NZ_AEUV Streptococcus criceti Streptococcaceae 94.26 98.15 7.31 19.51 35.48 41.22 

NZ_AEUZ Streptococcus urinalis Streptococcaceae 88.87 62.08 7.24 14.25 46.31 48.49 

NZ_AFAJ Vibrio rotiferianus Vibrionaceae 96.68 88.09 2.90 25.44 81.68 82.92 

*MetaPhlAn predicts this organism to be a genus among Acetobacteraceae distinct from Gluconoacetobacter. The low precision for 
Gluconacetobacter is thus likely to be due to a taxonomic misplacement of the new genome.  

  



Supplementary Table 2 Family level precision for 20 genomes belonging to species without reference genomes (see Table 1 for 
details). In the great majority of cases (18 out of 20) MetaPhlAn outperform all existing methods using standard settings, whereas 
for the remaining 2 cases more sensitive parameters can be used to produce the best precision values. 

New 
Genome 

New Species Target Family MetaPhlAn 
MetaPhlAn 

strict 
PhyloPythiaS Phymm BlastN PhymmBL 

NZ_BABW Acetobacter aceti Acetobacteraceae 100.00 100.00 1.66 9.23 13.72 17.39 

NZ_AFBG Acidovorax radices Comamonadaceae 61.12 76.61 5.09 21.70 48.28 51.82 

NZ_CACP Aeromonas caviae Aeromonadaceae 93.24 83.36 4.42 19.64 81.05 81.30 

NZ_AFBB 
Dialister 

micraerophilus 
Veillonellaceae 99.75 99.90 0.00 0.16 1.03 0.90 

NZ_AEXB Enterobacter mori Enterobacteriaceae 50.02 92.75 4.54 45.21 89.78 90.84 

NZ_ADLY 
Enterococcus 

saccharolyticus 
Enterococcaceae 99.89 91.39 0.00 2.20 13.66 13.56 

NZ_CADR 
Gluconacetobacter 

europaeus 
Acetobacteraceae 93.33 99.75 1.97 20.40 69.18 73.40 

NZ_AFBC 
Haemophilus 

aegyptius 
Pasteurellaceae 99.97 99.57 7.89 64.09 99.50 99.40 

NZ_AFHS Kingella kingae Neisseriaceae 94.20 100.00 2.16 17.90 17.85 24.73 

NZ_AEIZ Leuconostoc fallax Leuconostocaceae 59.17 97.60 0.68 9.60 25.87 29.87 

NZ_AEOR Leuconostoc lactis Leuconostocaceae 58.50 68.50 0.82 9.77 39.70 41.69 

NZ_AGAY Neisseria shayeganii Neisseriaceae 34.37 99.01 5.38 12.50 22.31 25.33 

NZ_AFWQ Neisseria weaveri Neisseriaceae 96.10 98.46 7.86 24.23 28.10 36.62 

NZ_AFHW Paenibacillus elgii Paenibacillaceae 0.00 67.44 2.48 5.78 19.72 21.65 

NZ_AHBD 
Pseudomonas 

psychrotolerans 
Pseudomonadaceae 51.46 77.36 6.90 17.16 39.78 42.59 

NZ_AHBW 
Rhodococcus 
pyridinivorans 

Nocardiaceae 61.42 18.17 8.63 10.20 28.65 33.59 

NZ_AGIU 
Saccharomonospora 

azurea 
Pseudonocardiaceae 79.13 83.90 0.00 1.78 26.49 26.19 

NZ_AEUV Streptococcus criceti Streptococcaceae 94.26 98.15 7.31 19.51 35.48 41.22 

NZ_AEUZ Streptococcus urinalis Streptococcaceae 88.87 62.08 7.24 14.25 46.31 48.49 

NZ_AFAJ Vibrio rotiferianus Vibrionaceae 96.68 88.09 2.90 25.44 81.68 82.92 
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